Таблицу Excel Гидравлического Расчета Системы Отопления

Таблицу Excel Гидравлического Расчета Системы Отопления 9,3/10 3691 reviews

Расчет системы отопления дома начинают с выбора топлива, исходя из учета потребностей и особенностей инфраструктуры местности, где расположен дом. Цель гидравлического расчета, программа и таблица которого есть в сети, заключается в следующем:. определение количества нагревательных приборов, которые необходимы;. подсчет диаметра и количества трубопроводов;. определение возможной потери отопления. Все подсчеты должны производиться по со всеми элементами, которые входят в систему. Подобная схема и таблица должны быть предварительно составлены.

Для проведения гидравлического расчета понадобится программа, аксонометрическая таблица и формулы. Двухтрубная система отопления частного дома с нижней разводкой. За расчетный объект принимается более нагруженное кольцо трубопровода, после чего определяется необходимое сечение трубопровода, возможные потери давления всего контура отопления, оптимальная площадь поверхности радиаторов.

Проведение подобного расчета, для чего используется таблица и программа, может создать четкую картину с распределением всех сопротивлений в контуре отопления, которые существуют, а также позволяет получить точные параметры температурного режима, расхода воды в каждой части отопления. Гидравлический расчет в результате должен выстроить наиболее оптимальный план отопления собственного дома. Не нужно полагаться исключительно на свою интуицию. Таблица и программа расчета упростят процесс. Элементы, которые нужны:.

Схемы. Программа расчета. Гидравлический расчет отопительной системы с учетом трубопроводов.

Схема систем отопления с насосной циркуляцией и открытым расширительным бачком. При проведении всех подсчетов будут использоваться основные гидравлические параметры, в том числе гидравлическое сопротивление трубопроводов и арматуры, расход теплоносителя, скорость теплоносителя, а также таблица и программа. Между подобными параметрами есть полная взаимосвязь. На это и необходимо опираться при проведении расчетов. Пример: если повысить скорость носителя тепла, одновременно повысится и гидравлическое сопротивление у трубопровода. Если будет повышен расход теплоносителя, одновременно может возрасти и скорость теплоносителя и гидравлическое сопротивление.

Затем для выбора оптимального диаметра труб нужно воспользоваться данными таблицы, составленными при выполнении гидравлического расчета системы отопления в Excel. В этом случае оптимальный внутренний диаметр трубы на конкретном участке системы составит 10 мм. В дальнейшем для выполнения примера гидравлического расчета системы отопления можно узнать ориентировочный расход воды, который засвистит от диаметра трубы. Производители полимерных труб указывают внешний диаметр. Поэтому для корректного расчета гидравлического сопротивления системы отопления следует отнять две толщины стенки магистралей.

  1. Для выполнения гидравлического расчета системы отопления нужно иметь. Что касается работы в Excel, то использовать электронные таблицы.
  2. Ранее теплотехнические и гидравлические расчеты делались при помощи. Электронные таблицы Microsoſt Excel, при заблаговременной подготовке. В связи с этим, в общем случае системы отопления по гидравлическим.

Чем большим будет диаметр трубопровода, тем меньшей будет скорость теплоносителя и гидравлическое сопротивление. На основе анализа подобных взаимосвязей есть возможность превратить гидравлический расчет в анализ параметров надежности и эффективности полностью всей системы, что может помочь снизить расходы на материалы, которые используются. Стоит помнить, что гидравлические характеристики не отличаются постоянством, с чем могут помочь номограммы.: расход теплоносителя. Гидравлический расчет подразумевает определение расходного уровня теплоносителя по отношению к заданному участку.

Расчета

Расчетный участок будет представлять собой участок, который имеет стабильный расход теплоносителя и постоянный диаметр. Пример краткого расчета будет содержать ветку, которая включает в себя 10 киловаттных радиаторов, при этом расход теплоносителя рассчитывается на перенос тепловой энергии на уровне 10 кВт. В данном случае расчетный участок представляет собой отрез от радиатора, который является первым в ветке, до теплогенератора.

Однако это только лишь при условии, что подобный участок будет характеризоваться постоянным диаметром. Второй участок будет расположен между первым и вторым радиаторами. Если в первом случае высчитывается расход переноса 10-киловаттной энергии тепла, то на втором участке количество энергии, которое рассчитывается, составит 9 кВт с возможным постепенным уменьшением по мере проведения подобных расчетов. Схема отопления с естественной циркуляцией. Гидравлическое сопротивление будет рассчитываться одновременно до обратного и подающего трубопроводов. Гидравлический расчет подобного отопления заключается в вычислении расхода теплоносителя по формуле для расчетного участка: G уч = (3,6.Q уч)/(c.(t r-t o)), где Q уч — тепловая нагрузка участка, который рассчитывается (в Вт). Данный пример содержит нагрузку тепла на 1 участок в 10000 Вт или 10 кВт, с — (удельная теплоемкость для воды) постоянная, которая равняется 4,2 кДж (кг.°С), t r — температура теплоносителя в горячем виде в системе отопления, t o — температура холодного теплоносителя в системе отопления.

Гидравлический расчет отопительной гравитационной системы: скорость потока теплоносителя. Схема системы теплоснабжения распределителей. За минимальную скорость теплоносителя следует принять пороговое значение 0,2-0,26 м/с. Если скорость меньше, из теплоносителя может выделяться избыточный воздух, что способно привести к появлению воздушных пробок. Это, в свою очередь, будет служить причиной полного или частичного отказа.

Касательно верхнего порога, скорость теплоносителя должна быть 0,6-1,5 м/с. Если скорость не поднимется выше этого показателя, в трубопроводе не смогут образовываться гидравлические шумы. Практика показывает, что для отопительных систем оптимальный скоростной диапазон составляет 0,4-0,7 м/с. Если есть необходимость в проведении более точного расчета диапазона скорости теплоносителя, понадобится брать в расчет параметры материалов трубопроводов в системе отопления.

Говоря более точно, будет необходим коэффициент шероховатости для внутренних трубопроводных поверхностей. Например, если речь пойдет о стальных трубопроводах, оптимальной будет скорость теплоносителя на уровне 0,26-0,5 м/с. Если имеется полимерный или медный трубопровод, скорость есть возможность увеличить до 0,26-0,7 м/с. Если есть желание перестраховаться, необходимо внимательно почитать, какая скорость рекомендуется изготовителями оборудования для отопительных систем. Более точный диапазон скорости теплоносителя, которая рекомендуется, будет зависеть от материала трубопроводов, которые применяются в отопительной системе, точнее от коэффициента шероховатости внутренней поверхности трубопровода. К примеру, для стальных трубопроводов рекомендуется придерживаться скорости теплоносителя от 0,26 до 0,5 м/с.

Таблица Excel Гидравлического Расчета Системы Отопления

Для полимерных и медных (полиэтиленовые, полипропиленовые, металлопластиковые трубопроводы) от 0,26 до 0,7 м/с. Есть смысл пользоваться рекомендациями от изготовителя, если они имеются. Расчет гидравлического сопротивления отопительной гравитационной системы: потеря давления. Руч = R. l + ((p. v2) / 2). E3, где v — скорость теплоносителя, который используется (измеряется в м/с), p — плотность теплоносителя (измеряется в кг/м³), R — потери давления в трубопроводе (измеряется в Па/м), l — расчетная длина трубопровода на участке (измеряется в м), E3 — сумма всех коэффициентов локальных сопротивлений на оборудованном участке и запорно-регулирующей арматуры.

Общее гидравлическое сопротивление представляет собой сумму сопротивлений расчетных участков. Данные содержит следующая таблица (ИЗОБРАЖЕНИЕ 6). Гидравлический расчет двухтрубной гравитационной отопительной системы: выбор основной ветви.

Гидравлический расчет трубопроводов. Если система гидравлики будет характеризоваться попутным движением теплоносителя, для двухтрубной системы необходимо выбрать кольцо наиболее загруженного стояка через прибор отопления, расположенный снизу. Если система будет характеризоваться тупиковым движением носителя тепла, для двухтрубной конструкции необходимо выбрать кольцо нижнего отопительного прибора для наиболее загруженного из самых удаленных стояков.

Если речь будет идти о горизонтальной отопительной конструкции, нужно выбрать кольцо через самую загруженную ветвь, которая относится к нижнему этажу. Расчет системы теплоснабжения распределителей.

Отопительные приборы горизонтальной подсоединяются к отопительной системе при помощи распределителя, который разделяет отопление на 2 системы: снабжение тепла распределителям (между распределителями и тепловым пунктом), а также отопление от распределителей (между отопительными приборами и распределителем). В большинстве случаев схема отопительной системы выполняется в виде раздельных схем:. схема систем отопления от распределителей;. схема системы теплоснабжения распределителей. В качестве примера предлагается гидравлический расчет 2-х трубной системы в двухэтажном административном здании. Теплоснабжение устраивается от встроенной топочной.

Имеются следующие исходные данные:. Расчетная нагрузка тепла отопительной системы: Q зд = 133 кВт. Параметры отопительной системы: t г = 75°С, t o = 60°С. в отопительной системе: V co = 7,6 м³/ч. Отопительная система присоединяется к котлам через гидравлический горизонтальный разделитель. Автоматика каждого котла поддерживает постоянную температуру носителя тепла на выходе из котла: t г = 80°С на протяжении всего года. На вводе каждого распределителя проектируется автоматический регулятор перепада давления.

Система теплоснабжения распределителей выполнена из стальных водогазопроводных труб, отопительной системы от распределителей — из металлополимерных труб. Для данной двухтрубной системы отопления нужно установить насос с управлением скоростью вращения. Для того, чтобы подобрать циркуляционный насос, понадобится определить значения подачи V н, м³/ч и напора P н, кПа. Подача насоса идентична расчетному расходу в отопительной системе. Потери давления распределителей OA P уч.с.т.

Потери давления отопительной системы от распределителей OA P уч.от. Потерь давления в распределителе A P распр. P н = A P co = OA P уч.с.т + OA P уч.от + A P распр.

Для подсчета OA P уч.с.т и OA P уч.от циркуляционного расчетного кольца следует выполнить схему системы теплоснабжения и схему отопления от распределителя «3» На схеме отопительной системы от распределителя «3» нужно распределить тепловые нагрузки помещений Q4 (расчетные потери помещением теплоты) по приборам отопления, которые суммируются по распределителям. Далее на расчетной схеме указываются тепловые нагрузки распределителей.

В зависимости от теплопроизводительности топочной, которая требуется, могут функционировать оба котла либо только один из них (в весенний и летний периоды времени). Каждый из котлов имеет отдельный циркуляционный контур с насосом Р1, в котором будет постоянный расход теплоносителя и одинаковая температура теплоносителя t г = 80°С на протяжении года. В бойлере 2 температура воды t г = 55°С водоснабжения может обеспечиваться за счет двухпозиционного регулятора температуры, который управляет включением насоса P2. В отоплении циркуляцию теплоносителя будет обеспечивать насос с электронным управлением Р3.

Температура подающей воды отопительной системы изменяется в зависимости от температуры наружного воздуха при помощи следящего электронного регулятора 11, который воздействует на трехходовой регулирующий клапан. Гидравлический расчет системы снабжения тепла распределителей может быть выполнен с использованием первого направления. В качестве расчетного основного циркуляционного кольца нужно выбрать кольцо через нагруженный прибор отопления самого нагруженного распределителя «3». Диаметры участков магистральных теплопроводов d y, мм подбираются при помощи номограммы, задаваясь водной скоростью 0,4-0,5 м/с. Характер использования номограммы изображает таблица (пример участка №1) G уч = 7581 кг/ч.

Рекомендуется при этом ограничиваться удельной потерей давления на трение R не больше 100 Па/м. На местные сопротивления Z, Па потери давления определяются согласно номограммам как функция Z = f (Oae). Результаты гидравлического расчета содержит таблица. A P О.К = 800 Па. На участке №1а сопротивление фильтра d = 65 мм должно определяться по значению пропускной способности, которую он имеет k v = 55 м3/ч.

Следовательно, A Pф = 0,1. (G k v) 2 = 0,1. (7581 / 55) 2 = 1900 Па. Типовой размер трехходового клапана выбирается, задаваясь необходимой величиной: k v = (2 G3 G), то есть k v 2. 7,58 = 15 м3/ч. Принимается клапан d = 40 мм, k v = 25 м3/ч.

Таблицы Excel Гидравлического Расчета Систем Отопления

Сопротивление его составит: A P кл = 0,1. (G k v) 2 = 0,1. (7581 / 25) 2 = 9200 Па. Следовательно, потери давления снабжения тепла распределителей равняются: OA P уч.с.т = 21514 Па (21,5 кПа). Подсчет оставшейся части снабжения тепла распределителей с подбором трубопроводных диаметров производится таким же образом. Для расчета OA P уч.с.т отопительной системы от распределителя «3», следует выбрать расчетное основное циркуляционное кольцо через самое нагруженное устройство отопления Q пр = 1500 Вт (Ветка «В»). Гидравлический расчет выполняется с использованием 1-го направления.

Диаметры участков теплопроводов d y, мм подбираются при помощи номограммы для металлополимерных труб, при этом скорость воды — не больше 0,5-0,7 м/с. Характер пользования номограммой изображается рисунке (пример участков №1 и №4). Рекомендуется при этом ограничиваться удельной потерей давления на трение R не больше 100 Па/м.

При проектировании систем водяного обогрева в доме принято выполнять гидравлический расчёт системы отопления. Это нужно для того, чтобы гарантировать максимальную эффективность работы при минимуме финансовых затрат и при правильном функционировании всех узлов. Целью гидравлического расчёта является:. Правильный выбор диаметра труб на тех участках трубопроводов, где его величина постоянна;. Определение действующего давления в магистрали;. Правильный выбор всех узлов системы.

От того, насколько верно выполнен гидравлический расчёт, будет зависеть температурный комфорт в доме, экономический эффект и долговечность системы отопления. Основные положения гидравлического расчёта Для выполнения всех необходимых вычислений, нам необходимы исходные данные:. Результаты теплового баланса комнат;. Температуры теплоносителя – начальная и конечная;.

Схема заданной системы отопления;. Типы обогревающих устройств и метод их соединения с магистралью;. Гидравлические характеристики используемого оборудования (клапанов, теплообменников и т.п.);. Циркуляционное кольцо – это контур замкнутого типа. Он состоит из отрезков с наибольшим расходом теплонесущей жидкости от точки нагрева до наиболее удалённой точки (в двухтрубной системе) или до стояка (в однотрубной) и в противоположную сторону к источнику тепла.

Участком для расчёта принимают часть трубопроводного диаметра с неизменяющимся значением расхода теплонесущей жидкости – его определяют, исходя из теплового баланса комнаты. Перед началом вычислений определяем тепловую нагрузку каждого отопительного агрегата. Она будет соответствовать заданной тепловой нагрузке комнаты. Если в помещении используется более одного обогревающего агрегата, распределяем тепловую нагрузку на всё их количество. Затем назначаем главное кольцо циркуляции – контур закрытого типа из последовательных отрезков.

Для вертикальной однотрубной магистрали число циркуляционных колец соответствует числу стояков. Для горизонтальной двухтрубной – числу обогревающих агрегатов. Главным назначают кольцо, идущее через стояк с наибольшей нагрузкой – для вертикальной магистрали, и идущее через нижний отопительный агрегат ветки с наибольшей нагрузкой – для горизонтальной системы. Необходимо учитывать, что значение диаметра для трубопроводов и величина действующего давления в кольце циркуляции зависят от скорости теплонесущей жидкости. При этом обязательным условием является обеспечение бесшумности движения теплоносителя. Для того чтобы избежать возникновения пузырьков воздуха, мы должны принять скорость теплоносителя более 0,25 м/с. Следует учитывать силу сопротивления, возникающего в контуре при движении жидкости.

Вследствие этого сопротивления удельные потери давления R должны составлять не более 100-200 Па/м. Существуют величины допустимой скорости воды, обеспечивающей бесшумность работы– она зависит от удельного местного сопротивления. Таблица 1 показывает пример величины допустимой скорости воды при разных коэффициентах местного сопротивления.

Таблица 1 Слишком маленькая скорость может стать причиной следующих негативных последствий:. Увеличение расхода материала на все работы по монтажу;. Увеличение финансовых расходов на монтаж и обслуживание системы отопления;. Увеличение объёма теплонесущей жидкости в трубах;.

Значительный рост тепловой инерции. Пример определения величины расхода теплонесущей жидкости. Для определения диаметра труб на заданных отрезках трубопроводов нам необходимо знать величину расхода теплоносителя. Её определяем, исходя из величины теплового потока – количества тепла, необходимого для компенсации теплопотерь. Зная величину теплового потока Q на участке 1-2, вычисляем расход теплоносителя G: G = Q / с (t г– t х) л/ч, где t г и t х соответственно температуры горячего и холодного (остывшего) теплоносителя; с = 4,2 кДж/(кг°С) — удельная теплоемкость воды. Пример определения диаметра труб на заданном участке Правильный выбор диаметра труб необходим для решения следующих задач:. оптимизация эксплуатационных затрат на нейтрализацию гидравлического сопротивления при циркуляции жидкости в контуре;.

достижение необходимого экономического эффекта при монтаже и обслуживании системы отопления. Для обеспечения экономического эффекта выбираем наименьшую возможную величину диаметра труб, однако такую, которая не приведёт к возникновению гидравлических шумов в магистрали, если скорость теплоносителя составит 0,6-1,5 м/с, в зависимости от местного сопротивления. Если мы выполняем гидравлический расчет двухтрубной системы отопления, принимаем разницу температур в подающем и отводящем трубопроводах равной: ∆t co = 90 – 70 = 20 °С где 90°С – температура жидкости в подающей трубе горизонтальной системы; 70°С – температура жидкости в отводящей трубе. Зная величину теплового потока и вычислив расход теплоносителя по приведённой выше формуле, из таблицы 2 мы можем выбрать подходящий для наших условий внутренний диаметр труб. Таблица 2 Определение внутреннего диаметра труб для отопления После определения внутреннего диаметра выбираем сам тип труб – он зависит от эксплуатационных условий, от поставленных задач, от требований к прочности и долговечности.

Основываясь на всех этих предпосылках, выбираем тип трубы рассчитанного диаметра, который удовлетворяет заданные условия. Пример определения действующего давления на заданном участке магистрали Если мы выполняем гидравлический расчет двухтрубной гравитационной системы водяного отопления, нам необходимо также знать действующее давление на заданном участке магистрали. Оно вычисляется по формуле: p = gh (ρ o – ρ г) + ∆p доп, Па, где ρ o – плотность остывшей воды, кг/м3; ρ г – плотность нагретой воды, кг/м3; g – ускорение свободного падения, м/с2; h – вертикальное расстояние от точки нагрева до точки охлаждения (от средней точки высоты котла до средней точки нагревательного прибора), м; ∆p доп – дополнительное давление, возникающее за счёт остывания воды в магистрали. Значения плотности воды для заданных температур, а также величину дополнительного давления узнаём из справочника. Гидравлический расчёт – задача крайне ответственная. От правильного выполнения всех вычислений зависит не только экономический эффект отопления дома, но также эффективность работы всех узлов и соответствие эксплуатационных характеристик всем нормам и требованиям.